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Abstract Many predator–prey systems are found in
environments with a predominantly unidirectional flow
such as streams and rivers. Alterations of natural
flow regimes (e.g., due to human management or
global warming) put biological populations at risk. The
aim of this paper is to devise a simple method that
links flow speeds (currents) with population retention
(persistence) and wash-out (extinction). We consider
systems of prey and specialist, as well as generalist,
predators, for which we distinguish the following flow
speed scenarios: (a) coexistence, (b) persistence of
prey only or (c) predators only (provided they are
generalists), and (d) extinction of both populations.
The method is based on a reaction–advection–diffusion
model and traveling wave speed approximations. We
show that this approach matches well spread rates ob-
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served in numerical simulations. The results from this
paper can provide a useful tool in the assessment of
instream flow needs, estimating the flow speed neces-
sary for preserving riverine populations.
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Introduction

A large number of organisms live in media that are
characterized by a predominantly unidirectional flow.
Rivers and streams are particular examples in which
the water flow constitutes not only a foundation for the
populations living therein, but also provides many ben-
eficial values and services at large (e.g., water supply
and groundwater recharge, navigation, nutrient trans-
port and recycling, flood mitigation, and recreational
opportunities such as fishing and boating, etc.). Fresh
water is a limited and precious resource, and has there-
fore been in the center of human use and management.
Changes in natural flow regimes, however, have put
many stream populations at risk. Conflicting interests
between water management and ecosystem functioning
thus pose a complex dilemma (e.g., Richter et al. 1997),
which requires multi-disciplinary solution approaches
(Anderson et al. 2006b).

The instream flow need (IFN) is a concept that
approaches this problem by trying to identify the
magnitude, timing, and variability of flow necessary
to preserve desired levels of biodiversity (Poff et al.
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1997). Alterations of these flow characteristics can
significantly affect the habitat available for populations,
as well as their foraging, reproductive, and competitive
behavior. For instance, bull trout (Salvelinus confluen-
tus) require a habitat that is cold, clean (for spawning
and rearing), complex (e.g., streams with riffles and
deep pools), and connected (for annual spawning and
feeding migrations). Flow alterations could pose signif-
icant disturbances, further threatening the bull trout,
which are experiencing serious declines in the USA and
Canada.

Water withdrawal, as well as river and stream regula-
tions, impact various characteristics of the flow regime,
including the current velocity or flow speed. We shall
assume that flow alterations, i.e., changes in the dis-
charge or run-off, proportionally affect the flow speed,
as discharge and water velocity are linearly related for
identical river geometries (e.g., Allan and Castillo 2007;
Chaudhry 2008). The question arising is how much the
flow can be changed while still maintaining an intact
stream ecology. Here we present a simple method to
link the flow speed with the persistence or extinc-
tion of species within a predator–prey community. The
method makes use of invasion speed diagrams and
is based on a system of reaction–advection–diffusion
equations. There are related mathematical models in
the literature, taking into account a single species only,
competition, consumption, nonlocal dispersal, spatial
heterogeneity, etc. Some of them focus on population
persistence as well and/or critical domain sizes (Speirs
and Gurney 2001; Pachepsky et al. 2005; Lutscher
et al. 2005, 2006, 2007; Byers and Pringle 2006), while
others consider characteristic spatial scales, called the
response lengths (Anderson et al. 2005, 2006a, 2008;
Nisbet et al. 2007). The appeal of the approach pre-
sented here is its simple graphical analysis of emerging
wave speeds. It readily provides information on the
flow needs required for predator–prey populations to
persist.

The remainder of this article is organized as follows.
The next section introduces the model and its under-
lying assumptions. The section “Population spread”
presents analytical approximations of invasion speeds,
upon on which the graphical analysis is based. The
section “Results” presents various examples of this
analysis for ecologically interesting scenarios. While
this section concerns specialist predators, the next one
applies the approach to generalist predators. The fol-
lowing section deals with the generality and limitations
of the results. The section “Drift-feeding” illustrates,
in an example of drift-feeding fish, that water flow
can be beneficial. Finally, this article concludes with a
discussion and summary of our results.

Model description

We consider populations of prey N and predators P
as functions of time t and space x. The environment
is assumed to be a well-mixed river or stream that we
can approximate by a spatially homogeneous line. The
dimensionless model reads

Nt = −vNx + Nxx + f (N, P)N , (1)

Pt = −δvPx + εPxx + g(N, P)P , (2)

where the subscripts denote respective partial deriva-
tives. The advective flow experienced by the prey is
denoted by v. We suppose that it is a measure of
the actual flow rate of the stream or river under con-
sideration and will henceforth take it as a proxy for
this control parameter. The predators may experience
different flow speeds than the prey due to behavioral
or morphological differences, cf. the section “Different
prey and predator flow speeds” for more details. Para-
meter δ describes the ratio of predator and prey flow
speeds. Both prey and predators obey random motion
in the form of diffusion. The diffusion coefficient for the
prey has been scaled to unity. Parameter ε is the ratio
of predator and prey diffusion coefficients. Functions
f (N, P) and g(N, P) describe the local per-capita rates
of change of prey and predators, respectively, due to
growth and interaction. One possible and simple para-
metrization of these functions is as follows (Volterra
1931):

f (N, P) = α(1 − N) − P , (3)

g(N, P) = N − μ . (4)

The prey are assumed to grow logistically in the ab-
sence of predators, with intrinsic growth rate α and
carrying capacity 1. Consumption of the prey by preda-
tors is described, for the sake of simplicity, by a linear
functional response of Lotka–Volterra type. Note that
the trophic conversion efficiency has been scaled to
unity. In the absence of prey, predators decay with
a per-capita mortality rate μ. That is, the predators
considered here are specialists. The section “Generalist
predators” will investigate generalist predators. Details
of the non-dimensionalization of the original model can
be found in the Appendix A.

To test the analytical approximations we will de-
rive in the next section, we will compare them with
results from numerical simulations. Numerical simula-
tions necessarily run on a bounded domain, for which
we have to impose boundary conditions. At the up-
stream end, we assume a dispersal barrier so that no
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individuals can leave or enter the river. This is de-
scribed by zero-flux boundary conditions at x = 0:

−vN + Nx = 0 ,

−δvP + εPx = 0 .

We assume a long river with the downstream end (x =
L) being “far” away, i.e., the boundary is supposed
to have only little influence. This can be expressed
by Danckwert’s boundary conditions (cf. Ballyk et al.
1998; Lutscher et al. 2006):

Nx = 0 , Px = 0 .

We have set L = 1000, choosing a river length that is
considerably larger than the expected traveling wave
front. The simulations have been checked for different
step sizes in both time and space.

Population spread

For the following analysis, we assume an unbounded
spatial domain, i.e., the length of the river is much
larger than the species’ dispersal distances, and bound-
ary conditions at the source and outlet can be neglected.
As initial conditions, we have the following situation in
mind, which is depicted in Fig. 1. There is a nucleus of
predators embedded within a nucleus of prey that are
placed in an otherwise uninhabited river.

There are two related quantities used to under-
stand the rate of spread of populations. The first is
the spreading speed, and the second is the traveling
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Fig. 1 Illustration of the initial conditions considered in this
paper. The predator population is nested centrally within the
prey population, which in turn inhabits a finite domain. Both
populations experience a flow in the downstream direction. cN ±
v and cP ± δv are the downstream and upstream invasion speeds
of prey and predators, respectively (more details in the text)

wave speed. The spreading speed is the rate at which
a locally introduced population eventually spreads spa-
tially into the surrounding habitat. In a river environ-
ment, there will be different upstream and downstream
spreading speeds. Traveling wave solutions are special
solutions to the partial differential equation model that
are translation-invariant, of a fixed shape connecting
one steady state (e.g., uninvaded) to another (e.g., in-
vaded), and moving at a constant speed c across the
spatial domain. The speed of the traveling wave is
typically bounded below by the spreading speed. For
example, Fisher’s equation (logistic growth with intrin-
sic growth rate α plus simple diffusion with diffusion
coefficient D) has a spreading speed of c∗ = √

αD, and
has traveling wave solutions, connecting the zero steady
state to the carrying capacity, for all traveling wave
speeds c ≥ c∗ (Aronson and Weinberger 1975). Hence,
the spreading speed is the minimum possible traveling
wave speed. This is also true for interacting population
models where there are cooperative or competitive
dynamics (Li et al. 2005), but has not been proved for
predator–prey systems.

However, in a system without advection, numeri-
cal solutions of the locally introduced predator–prey
populations appear to approach the form of traveling
waves moving at the minimum possible speed. That
is, constant profiles of prey and predator populations
asymptotically propagate with a constant speed, which
is the minimum traveling wave speed. While noting
that there is no proof of the equivalence of mini-
mum traveling wave speed and the spreading speed
for predator prey systems, we simply refer to these
wave speeds as reaction–diffusion speeds. Note that, for
the system Eqs. 1–4, without advection, the existence
of traveling waves has been mathematically proven by
Dunbar (1983, 1984). In a system with advection, we
can expect traveling wave fronts in two directions—one
downstream with a speed that is increased by the re-
spective flow speed and one upstream that is decreased
by the respective flow speed. The down- and upstream
speeds therefore have two components that can simply
be added or subtracted, namely, the reaction–diffusion
speeds plus/minus the respective flow speed (see the
Appendix B for details). If cN and cP denote the
reaction–diffusion speed of the prey and predators,
their up- and downstream speeds are

cN ∓ v , (5)

cP ∓ δv . (6)

When the flow speed is larger than the reaction–
diffusion speed, the upstream speed becomes negative
and the direction of the propagating wave is reversed.
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This is indicated by the two heads of the arrows in
Fig. 1. Negative upstream speeds imply that the pop-
ulation will eventually retreat from the river reach for
long times. We will refer to this as wash-out by anal-
ogy to similar processes in chemostat populations. The
downstream speeds are always positive.

The initial conditions chosen will give rise to two
invasion scenarios. First, the prey spreads into empty
space both up- and downstream. Second, the predators
spread into an area up- and downstream that is already
occupied by the prey. We will now consider each of
these cases separately and determine the wave speeds
of prey and predator invasion in upstream and down-
stream directions.

First, in the absence of predators (P ≡ 0), the prey
Eq. 1 reduces to

Nt = −vNx + Nxx + f (N, 0)N . (7)

If f (N, 0) is of logistic type as in Eq. 3, Eq. 7 is the
Fisher model (Fisher 1937; Kolmogorov et al. 1937)
plus advection. The reaction–diffusion speed of the
traveling wave therefore has the minimum speed

cN = 2
√

f (0, 0)

= 2
√

α with f (N, P) as in Eq. 3. (8)

Second, as for the predator invasion, we can assume
that the prey approach the carrying capacity, N ≈ 1.
Then Eq. 2 can be approximated by

Pt = −δvPx + εPxx + g(1, P)P. (9)

Neglecting the advection and for a g(N, P) as in Eq. 4,
this gives rise to a minimum speed (cf. Luther 1906;
Skellam 1951)

cP = 2
√

ε g(1, 0)

= 2
√

ε (1 − μ) with g(N, P) as in Eq. 4, (10)

provided that 0 < μ < 1. In the case with high mor-
tality, μ > 1, the predators will always go extinct, cf.
Eqs. 3–4. Henceforth, we will restrict our attention to
the case 0 < μ < 1.

We have obtained wave speed approximations for
both invasion scenarios. In the next section, we will
compare their values and infer their joint interplay.

Results

As specified by the initial conditions, the prey have
some distance from the predators at the beginning

(Fig. 1). In the course of time, the upstream and
downstream distances between the prey and predator
front change depending on the relative values of the
speeds determined in the previous section. We will now
identify asymptotic scenarios in which both prey and
predators coexist, both go extinct, or only the prey
survive.

Consider a fixed flow speed and the invasion of prey
and predators into one direction (upstream or down-
stream). If the prey invasion speed is larger than the
predator invasion speed, the distance between them in
this direction will increase linearly in time. We will refer
to this as run-away. In contrast, if the prey spread more
slowly than the predators do, the distance between
them in this direction shrinks linearly in time until the
predator front reaches the prey front. We will refer to
this as catch-up.

We will now consider these two cases for varying
flow speeds and into both upstream and downstream
direction. Initially, we assume that prey and predators
experience the same flow speed, i.e., δ = 1. In this case,
the question if one species is faster than the other re-
duces to a comparison of the reaction–diffusion speeds,
cf. Eqs. 5–6. Later, in the section “Different prey and
predator flow speeds,” we will relax the assumption of
identical flow speeds.

Invasion speed diagram

Figure 2 showcases how upstream and downstream in-
vasion speeds of prey and predators vary with the flow
speed v. It is easy to draw this and similar diagrams,
which we shall refer to as invasion speed diagrams. For
vanishing flow speed v = 0, there is no difference in up-
stream and downstream direction. The invasion speeds
coincide with the reaction–diffusion speeds, which give
the intercepts with the vertical axis. With increasing
flow speed, the upstream and downstream invasion
speeds diverge linearly with slope ∓1 for the prey and
slope ∓δ for the predators (recall that δ = 1 in this
example).

Prey run-away

The sample scenario illustrated in Fig. 2 reveals that
the prey have a larger reaction–diffusion speed than
the predators (cN > cP). In the downstream direc-
tion, the prey are always faster than the predators
and, therefore, run away for all flow speeds. In the
upstream direction, the prey are always faster as well.
However, upstream invasion speeds for both the prey
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Fig. 2 Invasion speed
diagram for specialist
predators that advance more
slowly than the prey. The
symbols indicate numerically
observed spread rates of the
respective population in
upstream and downstream
direction. Equations 1–4
with parameter values
α = 4, μ = 0.9, ε = 1, δ = 1
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and predators can become negative. This gives rise to
different possible outcomes.

(a) If the upstream speeds for prey and predators
are positive (0 ≤ v < v∗), both of them can spread
upstream. That is, predators and prey coexist, with
the prey running away in the upstream reach. This
is illustrated in Fig. 3a.

(b) For v ≈ v∗, the predator upstream speed is zero.
That is, the predator upstream invasion stalls
(Fig. 3b). The predators thus maintain a foothold
in the river reach, while the prey have an upstream
refuge where they are safe from predation. The lo-
cation of the transition, i.e., the predator foothold,
depends on the initial conditions.

(c) For intermediate flow speeds (v∗ < v < v†), the
predator upstream speed is negative while the
prey upstream speed remains positive. The preda-
tors get washed-out and, for a long time, will
eventually disappear from the entire river reach.
The prey are left alone in the habitat without
predators, cf. Fig. 3c.

(d) For v = v†, the prey upstream speed becomes
zero. This divides the river into an upstream reach
without the prey and a downstream reach where
the prey are present.

(e) For large flow speeds (v > v†), the prey are also
washed out. Both species will asymptotically dis-
appear and go extinct (Fig. 3d).

Obviously, the persistence of a species within the
stream is determined by its upstream invasion speed.
This is why we shall plot in the following invasion speed
diagrams the upstream branches only.

Predator catch-up

If the predator reaction–diffusion speed is larger than
the prey reaction–diffusion speed (cP > cN), there al-
ways is a catch-up in both upstream and downstream
directions (Fig. 4a). When the predator front reaches
the prey front, the wave speed approximations for the
predators no longer hold. This is because the prey
will not be at the carrying capacity anymore. Rather,
we have to consider the situation that both prey and
predators spread into empty space simultaneously. Nu-
merical simulations indicate that both species advance
with identical speed. In fact, the prey invasion continues
with the same speed cN ∓ v as before, while the preda-
tor invasion slows down to the prey invasion speed.
Taking this into account, the invasion speed diagram
in Fig. 4a (illustrating the situation before the catch-
up) can therefore be modified to the one in Fig. 4b
(illustrating the situation after the catch-up).

We can broadly distinguish the following cases:

(a) If the flow speed is small (v < v∗), there is co-
existence in both the upstream and downstream
reaches. The predators catch up to the prey
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Fig. 3 Illustrations of a community coexistence with prey run-
away, b prey upstream refuge, c predators wash-out, and d com-
munity extinction, depending on river flow speed regimes. The

Eqs. 1–4 with parameter values as in Fig. 2. a v = 0.2, each ten
times units from t = 30. b v = 0.632456, from t = 60. c v = 2, from
t = 100. d v = 5, from t = 60

invasion fronts and advance in joint fronts with the
prey.

(b) For intermediate flow speeds (v∗ < v < v†), the
prey upstream speed is negative, leading to a
wash-out of the prey. Since the predators are
specialists, they cannot persist without the prey.
Hence, even though the predator upstream inva-
sion speed before catch-up is positive, both prey
and predators will be washed out (Fig. 4b). The
effective critical flow speed v‡ for prey and preda-
tors wash-out coincides with v∗.

(c) For large flow speeds (v > v†), the upstream
speeds for both populations are negative, still im-
plying extinction of predators and prey.

Note that, in this scenario (faster predator invasion),
the eventual outcome is either coexistence or extinction
of both species. There is a unique critical flow speed
v∗ = v‡ that separates flow regimes allowing coexis-

tence from flow regimes, leading to community extinc-
tion. In contrast to the previous scenario (faster prey
invasion), there is no regime of flow speeds where the
prey can persist without the predators (v∗ < v < v†).

Different prey and predator flow speeds

We now consider the case that prey and predators
experience different flow speeds, i.e., δ 	= 1. If δ > 1
(δ < 1), the predator flow speed is larger (smaller) than
the prey flow speed. This can be caused by a number
of mechanisms. For example, the predators could have
the capability of directed locomotion and, therefore,
increase the effective advective flow speed in pursuit of
the prey. Adults of aquatic insects could fly upstream to
oviposit, thus balancing the downstream drift (Müller
1954, 1982). Species could also reside mainly on the
benthos or have refugia within the river (e.g., Waters
1972; Richardson 1992; Lancaster and Hildrew 1993;
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Fig. 4 Invasion speed
diagram for specialist
predators that advance faster
than the prey. a Before
catch-up and b after catch-up.
After the catch-up, predators
are slowed down to the same
spread rate as the prey. This
effectively shifts down the
predator invasion speed
lines and overlays them
with the lines for the prey.
Equations 1–4 with
parameter values
α = 0.2, μ = 0.5,

ε = 1, δ = 1
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Winterbottom et al. 1997; Rempel et al. 1999; Walks
2007). These mechanisms can effectively increase or
decrease the flow speed experienced by a species in
comparison with the actual water current. We there-
fore consider v as the flow speed realized for the
prey and δv as the relative flow speed realized by the
predators.

If the flow speeds of prey and predators are different,
the upstream and downstream speeds of the predators

diverge with different slopes (δ 	= ∓1) than those of
the prey (slopes ∓1). This is illustrated in Fig. 5. The
scenario shown therein assumes that the predators are
faster than the prey in the absence of flow and that
δ > 1. We can distinguish the following outcomes:

(a) In the downstream direction and, for small flow
speeds (v < v#), in the upstream direction, the
predators catch up to the prey (Fig. 5a). Since
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Fig. 5 Invasion speed
diagram for specialist
predators that advance faster
than the prey and experience
a different flow speed δv.
a Before catch-up and b after
catch-up. If it comes to a
catch-up, predators are
slowed down to the same
spread rate as the prey.
Equations 1–4 with
parameter values α = 0.2,

μ = 0.5, ε = 1, δ = 3
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the predators are specialists, population spread
after catch-up will take place with identical speed,
namely that of the prey. Figure 5a can therefore
be modified to Fig. 5b.

(b) At v ≈ v#, the prey upstream speed becomes
larger than the predator upstream speed. From
that flow speed on, the prey runs away from the

predators in the upstream direction. Hence, in the
flow interval v# < v < v∗, there is coexistence with
a run-away rather than a catch-up.

(c) For flow speeds v∗ < v < v†, the predators get
washed-out so that the prey can persist alone.

(d) For large flow speeds (v > v†), both species are
washed-out.
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We saw in the previous subsection (“Predator
catch-up”) with identical flow speeds that prey with a
smaller reaction–diffusion speed (cN < cP) either co-
exist with predators or go extinct. This established a
unique critical flow speed v∗ = v‡. If the predators
experience a larger flow speed (δ > 1), however, the
situation changes in that there is another regime of flow
speeds (v∗ < v < v†) allowing prey persistence without
predators.

Conversely, the scenario of predator wash-out and
prey survival (for δ = 1, cf. section “Prey run-away”)
may be changed to the coexistence of both species if δ <

1, i.e., predators experience a smaller flow speed than
prey. Obviously, the predators benefit from a decrease
in experienced flow speed as they are less likely to be
swept away.

Generalist predators

In the previous section, we studied the example of spe-
cialist predators that cannot sustain themselves without
the prey. In the case of a catch-up, the predators are
either slowed down to the prey speed or are washed-out
jointly with the prey even when the predator upstream
speed is positive. We now consider generalist predators
with alternative food sources that can persist in the
absence of the prey.

Model description

We assume that the prey Eq. 3 remains unchanged, but
that the predator equation can be described with the
following per-capita rate of change replacing Eq. 4

g(N, P) = β(κ − P) + N . (11)

In the absence of prey, the predators grow logistically to
a limit κ and with a maximum per-capita growth rate β.
Please see the Appendix A for the original dimensional
model. Compared to Eq. 4, the predators now have
alternative resources as well as density-dependent limi-
tation in the form of intraspecific competition. This may
lead to the situation where the predators drive the prey
extinct—an interesting scenario in the context of inva-
sive species causing environmental problems. However,
as in the previous section, we henceforth assume that
predators and prey are able to coexist. That is, the
nontrivial stationary state (N∗ = β(α−κ)

1+αβ
, P∗ = α(1+βκ)

1+αβ
)

is stable. This implies α > κ , which we shall henceforth
consider. Note that, due to the new function Eq. 11,
there is an additional stationary state (N∗ = 0, P∗ = κ)

with predators only. It is unstable if α > κ and stable
otherwise.

Wave speeds

Let us reconsider the catch-up of the prey by the
predators. At the leading edge of both the prey and
predator fronts, we have N ≈ 0 and P ≈ 0. The idea
is to approximate both prey and predator invasions
again by Fisher waves. In the absence of advective flow
and following a similar line of arguments as before,
the minimum invasion speed of predators can then be
estimated as follows:

cCU
P = 2

√
ε g(0, 0)

= 2
√

εβκ with g(N, P) as in Eq. 11.

The superscript refers to the scenario after catch-up.
Note that cCU

P < cP, because we assume that the preda-
tor growth rate g(N, P) increases with prey abundance.
The invasion speed cN of the prey before catch-up
remains unchanged. We can now distinguish two cases,
depending on whether the new predator speed after
catch-up is still larger or smaller than the prey speed.

1. If cCU
P > cN , the predators advance faster into

empty habitat. They will run away from the prey,
which we will refer to as take-over. The distance
between predators and prey increases linearly with
time. The prey will have to advance into an area
where the predators have grown to their limit κ .
This slows down the prey invasion to a minimum
speed

cCU
N = 2

√
f (0, κ)

= 2
√

α − κ with f (N, P) as in Eq. 3. (12)

2. If cCU
P < cN , the prey advance faster into empty

space. However, they cannot escape from the
predators because they follow closely and will
catch-up rapidly (recall that cP > cN). We there-
fore expect a predator front closely following an
invading prey front. This means that the predators
are slowed down to the minimum prey speed cN .

Predator take-over

We now consider the case of a take-over of faster
predators, i.e.,

cP > cCU
P > cN,

and identical flow speeds, i.e., δ = 1. Figure 6a shows
the upstream and downstream invasion speeds of prey
and predators before catch-up. We always expect a
take-over, be it because the predators advance faster
into open space than the prey or because the prey are
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Fig. 6 Invasion speed
diagram for generalist
predators that advance faster
than the prey. a Before
take-over and b after
take-over. After take-over,
both prey and predator
invasion speeds are slowed
down, which shrinks the flow
regimes facilitating
population persistence.
Equations 1–3, Eq. 11
with parameter values
α = 0.12, β = 5, κ = 0.1,

ε = 1, δ = 1
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washed out for large enough flow speeds. We therefore
modify the invasion speed diagram taking into account
the speeds after the take-over, i.e., the predators propa-
gate with speed cCU

P and the prey propagate with speed
cCU

N . This is shown in Fig. 6b, revealing the following
eventual outcomes.

(a) Coexistence of prey and predators is possible for
a low flow regime 0 < v < v�.

(b) For intermediate flows (v� < v < v‡), the prey are
washed out. The predators continue to advance in
the upstream direction with the same speed cCU

P
that is independent from the prey.

(c) For larger flows (v > v‡), both populations are
washed out, leading to extinction of the entire
system.

With the predators being generalists, there is a new
flow regime (v� < v < v‡) not observed before, namely,
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prey extinction and persistence of the predators only.
In the analogous situation of a specialist predator
(Fig. 4), only coexistence or extinction of all species is
possible.

It is also interesting to note that the flow regime
allowing prey persistence shrinks after take-over, from
v < v∗ = 0.69 in Fig. 6a (before take-over) to v < v� =
0.28 in Fig. 6b (after take-over). This is because the
prey is propagating into habitat occupied by predators,
which leads to a reduced prey growth, cf. Eq. 11. Hence,
the possibility of coexistence is reduced correspond-
ingly. Moreover, the flow regime allowing predator
existence has shrunk as well (from v < v† = 2.45 to
v < v‡ = 1.41 in Fig. 6). This is because the predators
are slowed down after take-over as well. Ahead of the
prey front, the predators have only their alternative
resources to grow on, but they cannot benefit from the
prey anymore. Hence, alternative food sources for the
predators allow them to survive without the prey in an
intermediate flow regime, but they generally seem to
reduce the range of coexistence.

Generality and limitations

Up to now, we have assumed linear predation rates and
local growth functions of prey and predators that are
of logistic or exponential type. In this section, we will
discuss the applicability of invasion speed diagrams to
other situations, especially with respect to their practi-
cal value. We consider the following generalized model
of biomass-conversion type (Section “Drift-feeding”
deals with yet another approach specific for drift-
feeding stream fish):

Nt = −vNx + Nxx + f (N)N − h(N, P)P , (13)

Pt = −δvPx + εPxx

+ [
h(N, P) + g1(P) − g2(P)

]
P . (14)

Function f (N) now represents the per-capita growth
rate of prey in the absence of predators. h(N, P) is the
functional and numerical response of predators (we still
assume that the model has been non-dimensionalized
such that the trophic conversion efficiency is equal to
one). g(P) := g1(P) − g2(P) is the predator per-capita
growth rate in the absence of prey. It can be split into
a gain term g1(P) that describes growth by consump-
tion of alternative food and a loss term g2(P) that
describes mortality (e.g., natural deaths or predation
by top predators). The predators can be considered
specialists if g(0) ≤ 0 and generalists otherwise.

Table 1 summarizes situations in which the usage of
invasion speed diagrams is difficult, limited, or appears
to not be possible at all—at least at the current state
of knowledge. The reasons behind these complications
are discussed in the following subsections. Note that
the predator–prey models referred therein have been
investigated mostly in a reaction–diffusion context, i.e.,
without advection.

Allee effects

The Allee effect describes a decline in population
growth at small densities, for example, due to difficul-
ties in finding mating partners (e.g. Courchamp et al.
2008). One possible parameterization (cf. Lewis and
Kareiva 1993) is

f (N) = r(1 − N)(N − u) , u ≤ 1.

With a strong Allee effect (0 < u < 1), population
growth becomes negative at small densities; in partic-
ular, f (0) < 0. With a weak Allee effect (−1 < u ≤
0), population growth at small densities remains posi-
tive, but is reduced. In either case, the maximum per-
capita growth rate does not occur at zero population
density anymore. This implies that the wave speed

Table 1 Behavior of selected predator–prey models of type Eqs. 13–14 that complicates the practical applicability of invasion speed
diagrams, cf. section “Generality and limitations”

f (N)N g1(P)P g2(P)P h(N, P) Possible behavior, ref. Complication

Logistic – Linear Type II Spatiotemporal chaos [1] Complex dynamics
Logistic – Quadratic Type II Bistability [2] Multistability
Logistic g(P)P logistic Type II Bistability [3] Multistability
Weak Allee effect – Linear Linear Predator slow-down [4] Allee effect
Strong Allee effect – Linear Linear, type II or III Spread reversal [4] Allee effect
Strong Allee effect g(P)P logistic Type II Spread reversal [5] Allee effect
Strong Allee effect – Cubic Linear Spread reversal [6] Allee effect
Strong Allee effect – Linear Type II Patchy invasion [7] Complex dynamics

References: [1] Sherratt et al. (1995), [2] Steele and Henderson (1981), [3] Magal et al. (2008), [4] Owen and Lewis (2001), [5] Fagan
et al. (2002), [6] Petrovskii et al. (2005b), [7] Petrovskii et al. (2002)
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approximations would be different (Hadeler and Rothe
1975; Rothe 1981).

The spread of a prey population with a weak Allee
effect can be slowed down in the presence of a predator
(Owen and Lewis 2001). The spread of a prey popu-
lation with strong Allee effect can even be reversed
(Owen and Lewis 2001); see also Lewis and van den
Driessche (1993) and Hilker et al. (2005) for similar
retreats of invasion fronts. Such spread reversals mean
that the population can go extinct in the absence of
any flow, thus making persistence in a stream ecosystem
even more difficult.

In principle, the tool of invasion speed diagrams can
still be used. The only difference is that the reaction–
diffusion speed cN of the prey may be negative. How-
ever, generally speaking, it is more difficult to find an
explicit wave speed approximation in a system with
Allee effect. Existing approaches include singular per-
turbation theory (Owen and Lewis 2001) and time scale
arguments (Hilker et al. 2005). Exact solutions have
been found only for particular models assuming a cubic
predator mortality (Petrovskii et al. 2005b).

There is an additional caveat related to strong Allee
effects, as they can control the early phase of an inva-
sion. The initial population size as well as the spatial
extent need to be large enough to trigger the invasion
process at all. Otherwise, the invasion nucleus collapses
(Nitzan et al. 1974; Malchow and Schimansky-Geier
1985; Lewis and Kareiva 1993; Kot et al. 1996; Wang
et al. 2002; Hilker et al. 2007).

Multistability

A strong Allee effect usually induces bistable dynamics.
This means that the population either advances (in-
vades) or retreats (goes extinct). There are a number of
ecological mechanisms that can induce bi- or multista-
bility as well. A well-known example is a model system
of the spruce budworm, where a static predator with
type-III functional response (h(N, P) = aN2

1+b N2 ) leads
to three nontrivial equilibria, two of which are stable
and one of which is unstable (Ludwig et al. 1978). As
the trivial equilibrium is unstable as well, one of the
two stable equilibria will eventually invade the spatial
domain (Murray 2003).

In contrast to the strong Allee effect, such bistabil-
ity always leads to population spread. The question
is just which level of population density is achieved,
because one stable equilibrium often corresponds to an
“outbreak” state and the other one to a “quiescence”
state. This is of interest for biological control, since total
eradication is not possible, but the population level can
be controlled.

In the context of stream ecosystems, the method of
invasion speed diagrams can be used in principle. How-
ever, as in the Allee effect case, it is usually more dif-
ficult to find approximations of the reaction–diffusion
speeds.

A type-III functional response is not the only ex-
ample of such form of bistability, of course. There are
other instances that occur for a type-II functional re-
sponse (h(N, P) = aN

1+b N ). A density-dependent preda-
tor per-capita mortality (h2(P) = −μP) can induce
bistability (Steele and Henderson 1981). This kind of
mortality is often referred to as quadratic closure of
a food chain because it can be used to model the im-
pact of top predators. Hainzl (1988) considers the case
h2(P) = −ν − μP. A generalist predator, which can
survive with prey and be modeled by h(P) = β(κ − P),
also has an implicit quadratic mortality that can lead to
bistability. Strong Allee effect-like bistability is possible
as well. The dynamics can be more complicated, includ-
ing unstable limit cycles and homoclinic loops (Magal
et al. 2008).

Complex dynamics

Loosely speaking, we can distinguish two different
scenarios with complex spatiotemporal dynamics. The
first one typically occurs when the non-spatial system
oscillates as in the classical predator–prey model with
saturating type-II functional response (Rosenzweig and
MacArthur 1963). In the wake of a predator invasion
wave, irregular fluctuations appear that correspond to
spatiotemporal chaos (Sherratt et al. 1995; Sherratt and
Smith 2008). They are self-organized and occur for a
wide class of initial conditions (Petrovskii and Malchow
2001; Malchow et al. 2008). Note that spatiotemporal
chaos can also be induced by spatial heterogeneity
(Pascual 1993).

The second mechanism involves a strong Allee effect
in the prey (Petrovskii et al. 2002, 2005a; Malchow
et al. 2008) or a subsystem with some kind of bistability
(Morozov et al. 2008). Spatial spread does not take
place in the form of continuous traveling fronts any-
more. Rather, the fronts break up, giving rise to a
spread regime called “patchy invasion.”

While it is possible to estimate a lower bound for
the predator spread rate in the former case (“chaos in
the wake of invasion”), see Petrovskii and Malchow
(2001), spread rates for the latter case (“patchy in-
vasion”) have been investigated only numerically
(Morozov et al. 2006). The utility of invasion speed
diagrams with respect to their simplicity therefore ap-
pears to be restricted to predator–prey communities
with a stable coexistence equilibrium—an assumption
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also made in Owen and Lewis (2001) and Fagan et al.
(2002).

Drift-feeding

In the previous sections, increased flow speed has an
exclusively negative effect on population persistence.
In fact, all the differential equation-based models we

are aware of (cf. references in the introduction) assume
that flow tends to wash-out organisms. The purpose of
this last section before the final conclusions is to present
an example, in which increased flow rate may actu-
ally be beneficial for a species, namely, drift-feeding
predators.

Many stream fish are drift-feeders, i.e., they hold
fixed positions in the water current and feed on

Fig. 7 Invasion speed
diagram for drift-feeding
predators, a before catch-up
and b after catch-up. The
predators’ upstream spread
rate benefits from increasing
water velocity. There is a
threshold velocity v§ that
facilitates the emergence of a
prey-only scenario at low flow
speeds. Parameter values:
α = 4, μ = 0.9, ε = d = e = 1
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invertebrates that are drifting by. Examples include
salmonids such as coho salmon, brook trout, brown
trout, steelhead trout, summer chinook, and Arctic
grayling. Drift-feeding has received increasing inter-
est due to its importance for stream fish growth and
habitat restoration. We now consider a predator–prey
model with drift-feeding predators. The novelty is that
the functional response also depends on the speed of
the water current rather than on the prey population
alone.

The rationale behind this is the observation of a
proportional relationship between water velocity and
drift abundance (e.g., Everest and Chapman 1972;
Wańkowski and Thorpe 1979; Fausch 1984; Hughes and
Dill 1990; Baker and Coon 1997; Nislow et al. 1999).
The amount of prey eaten by a single predator per
unit time is assumed to be 2d × e × v × N, where d is
the detection distance of predators per unit time, e is
the capture success per prey, and v is the velocity of
drifting prey. This approach is similar to an equation
for the functional response of a stationary predator to
a mobile prey discussed by Holling (1961, p. 167). We
further assume that there is no handling time and that
the capture success, as well as the detection distance,
are constant (but see Hughes and Dill 1990; O’Brien
and Showalter 1993; Piccolo et al. 2007). The dynamic
equations for the prey and predators, respectively, are

Nt = −vNx + Nxx + α(1 − N)N − 2devN P , (15)

Pt = εPxx + (2devN − μ)P . (16)

Note that there is no advection term for the predators
as they are assumed stationary in the current. Utilizing
the usual assumption for predator invasion, namely,
that the prey N ≈ 1 reach carrying capacity if preda-
tors are initially rare, this gives the following reaction–
diffusion speed:

cP = 2
√

ε(2dev − μ).

Hence, in contrast to the previous models, there is a
critical flow speed

v§ = μ

2de
,

below which the predators go extinct and above which
they can persist.

Figure 7 illustrates the basic effects of varying water
velocity in this drift-feeding model. We assume that
μ < 2ed

√
α; otherwise, there is no intersection of the

prey and predator curves because the prey are washed
out before the predators are able to persist.

(a) If v < v§, the predators cannot persist due to a
lack of drift. The prey establish in the entire
stream at carrying capacity.

(b) For v§ < v < v‡, predators and prey could coexist,
with the prey running away from the predators if
v < v� and with the predators catching up if v >

v�.
(c) If v > v‡, the prey are washed out and so are their

specialist predators.

The following observations are noteworthy:

1. Flow speed has a positive rather than negative
effect on the predator population.

2. There is a threshold velocity v§ necessary for preda-
tor emergence.

3. Below this threshold, i.e., for small flow speeds,
there is a prey-only scenario, which is another qual-
itatively new feature of the drift-feeding model.

It should also be noted that species do not drift-
feed all the time but pursue other activities. Despite
these shortcomings, the model serves to demonstrate
that species may benefit from increasing water velocity.

Discussion and conclusions

Increasing and conflicting demands for freshwater re-
sources constitute the need to evaluate IFNs in streams
and rivers. If natural flow regimes change (e.g., due to
anthropogenic influence), this can directly impact the
ecology of organisms inhabiting these habitats. Assess-
ing population and community persistence for varying
stream flows therefore is a key issue for biodiversity
maintenance in advective environments. We have pre-
sented a simple method based on invasion speed dia-
grams that link different flow speeds to their impact on
a population and community level. It can provide useful
information on how a population is distributed over
space and if a population will persist. These questions
are rarely addressed in IFN assessments (Anderson
et al. 2006b). Flow speed can be seen as a surrogate
for the flow volume (discharge), but there may be sit-
uations in which these two quantities are not positively
correlated.

We have identified the following possible outcomes
that depend on the flow speed, as well as on the popu-
lation and food web dynamics:

1. Coexistence of prey and predators (for small flow
speeds)
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2. Extinction of prey and predators (for large flow
speeds)

3. Prey-only (for intermediate flow speeds if the prey
advances faster than the predators)

4. Predators-only (for intermediate flow speeds if the
predators are generalists and advance faster than
the prey)

These results appear to suggest that reducing flow
speed (e.g., water withdrawal) leads to species coexis-
tence, i.e., improves ecosystem dynamics. This seems
to be both counterintuitive and controversial, which
is why some remarks of caution and caveats are in
order. The standard models considered here rest on
the assumption that increased flow speed is generally
adverse for organisms by sweeping them away. How-
ever, water current can also convey benefits, such as
affecting physical factors like water temperature and
oxygenation, washing out competitors, and facilitating
the transport of resources to the organism or the re-
moval of waste (Allan and Castillo 2007). We have
illustrated this, to our knowledge, for the first time in a
mathematical model, by the drift-feeding example (sec-
tion “Drift-feeding”), in which stream fish take advan-
tage of increased drift abundance. These considerations
suggest that species coexistence can be reached for in-
termediate flow speeds, and that there is the possibility
of community collapse with loss of the higher trophic
levels at low flow speeds as water flows are increasingly
diverted for human use.

The invasion speed diagrams remain useful even
in these circumstances. They highlight the importance
of one crucial quantity that determines the persis-
tence or extinction of a population, namely, the up-
stream invasion speed. If it is negative, the population
will be washed-out and eventually disappear from the
river. If it is positive, the population will establish
itself and spread in the entire river. If it is identi-
cal (or close) to zero, the population will maintain
a foothold somewhere in the river. It will establish
and spread downstream from the foothold, but it can-
not invade (or only very slowly) upstream from this
location.

Depending on the invasion speeds of prey and preda-
tors, we identified the scenarios of run-away, catch-up,
and take-over. In case of a run-away, there will be a
river reach where the prey exists without predators.
This reach increases with time in spatial length and
propagates in both upstream and downstream direc-
tions. In case of a take-over, predators can be observed
without the prey. And in case of a catch-up, predators
and prey will be observed only together.

Alternative resources of generalist predators allow
them to coexist without the prey. This facilitates the
take-over of the prey front after catch-up. However,
without having the prey available, the predators can be
substantially slowed down after taker-over. In fact, the
flow regime of wash-out becomes more prevalent, and
also the prey are negatively affected since they spread
into a more hostile habitat with predators. Hence, al-
ternative food is beneficial for the predators in pursuit
of the prey, but can be detrimental for the community
after catch-up.

The conclusions of this paper are based on asymp-
totic behavior. In reality, it may take a very long time
before the scenarios identified take place, and the pop-
ulations are likely to be perturbed by other factors that
are not considered in our models. For example, spatial
heterogeneity is not captured in the well-mixed rivers
considered here. The flow speeds could be different in
various parts of the rivers (such as riffles and pools),
and the population dynamics could vary as well with the
quality of different habitats (Lutscher et al. 2006). Also,
we have not considered inlets of other streams or rivers
that could lead to an external inflow of individuals.
Another assumption made is the infinite river length.
At locations close to the upstream and downstream
ends, boundary effects are likely to occur that will inval-
idate the analytical invasion speed approximations. The
numerical simulations performed, however, indicate an
excellent match of analytically approximated minimum
wave speeds and spread rates observed on long, but
finite, domains.

Many organisms have developed strategies to pre-
vent being washed-out. Stream ecology has long been
concerned with the so-called “drift paradox” (Müller
1954, 1974, 1982; Brittain and Eikeland 1988; Allan
1995), i.e., how can a closed population persist while
being constantly drifted downstream with extinction
appearing inevitable? A number of explanations have
been proposed that can resolve this paradox; see the
section “Different prey and predator flow speeds” and
the references therein. In our model, we have cap-
tured some of the mechanisms, including benthic stages
and active upstream movement, by taking into account
that predators and prey can experience different flow
speeds. Both populations also have the potential to
move randomly, with identical or different diffusion
constants. The diffusive spread of the populations is
indeed a prerequisite for population persistence in
this model framework (cf. Speirs and Gurney 2001;
Humphries and Ruxton 2002).

The discharge and, therefore, the flow regime are
subject to some natural variability. This can be due
to regular seasonal fluctuations in precipitation and
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snowmelt or to more stochastic events such as extreme
rainfall or droughts. In fact, for a “healthy” stream,
there is usually not just one flow regime. All the hy-
drological, biological, and geomorphological structures,
as well as functions of a riverine system, can only be
preserved by intra- and interannual variation in flow.
Hence, it is possible that the biological populations
temporarily or regularly move from one flow regime
to another. That is, a population retreats from a river
reach for some time, but then can advance again. This
will be further addressed in a separate analysis. It is
interesting to note that, in many regions of the world,
climate change is expected to increase the temporal
variability in flow.

One of the largest merits of the invasion speed
diagrams is probably their simplicity. Basically, one
needs only two “ingredients.” First, the spread rate of a
population in an environment without flow, which will
give the interception with the vertical axis. This corre-
sponds to the diffusive wave speed, which is determined
by the diffusion coefficient and the linearized growth
rate at zero densities. There exist various methods to
estimate the spread rate from data (e.g., Shigesada
and Kawasaki 1997; Turchin 1998). Second, starting
from this intercept, one draws two straight lines for
the upstream and downstream speeds. The slopes of
these lines are given by the flow speed the population
experiences. Estimates of this quantity can be obtained
as well (for instance, Walks 2007).

The analysis that has been presented here for a
predator–prey system is easily applicable also to other
multi-species communities, for instance, with compe-
tition or infection. Invasion speed diagrams facilitate
a straightforward method of estimating the IFN of
populations to persist either in isolation or in coexis-
tence with other species. In the presentation of this
article, we had particularly riverine environments in
mind, although the results can be extended to pop-
ulations in other advective media. Examples include
marine organisms in longshore currents (Gaylord and
Gaines 2000; Byers and Pringle 2006), plants or insects
in winds with a prevailing direction (Takahashi et al.
2005), species in plug-flow reactors (Ballyk and Smith
1999), and populations facing a pole-wards movement
of reference frame due to global warming (Potapov and
Lewis 2004).
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Appendix A: (Non-)dimensional models

Our starting point is a dimensional model of prey N and
predators P at time t and spatial location x:

∂

∂t
N(x, t) = −vN

∂

∂x
N(x, t) + DN

∂2

∂x2
N(x, t)

+ f (N, P)N,

∂

∂t
P(x, t) = −vP

∂

∂x
P(x, t) + DP

∂2

∂x2
P(x, t)

+g(N, P)P.

The downstream advection speeds experienced by the
prey and predators are denoted by vN and vP, respec-
tively. The diffusivities describing random movement
are DN for the prey and DP for the predators. The
growth function of the prey is given by

f (N, P) = r
(

1 − N
K

)
− aP,

where r is the intrinsic growth rate, K is the carrying
capacity, and a is the predation rate. The growth rates
of specialist and generalist predators are differently
defined as follows:

A.1 Specialist predators

For specialist predators, we assume

g(N, P) = eaN − m,

where e is the trophic conversion efficiency and m the
mortality rate. Introducing the dimensionless quantities

Ñ = N
K

, P̃ = P
eK

, t̃ = eaKt ,

x̃ =
√

eaK
DN

x , v = vN√
eaKDN

, α = r
eaK

,

δ = vP

vN
, ε = DP

DN
, μ = m

eaK
,

we arrive at the following dimensionless system:

∂

∂ t̃
Ñ = −v

∂

∂ x̃
Ñ + ∂2

∂ x̃2
Ñ + αÑ(1 − Ñ) − Ñ P̃ ,

∂

∂ t̃
P̃ = −δv

∂

∂ x̃
P̃ + ε

∂2

∂ x̃2
P̃ + Ñ P̃ − μP̃ .

Dropping the tildes for notational convenience gives
the dimensionless Eqs. 1–4.
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A.2 Generalist predators

For generalist predators, we assume

g(N, P) = eaN + b
(

1 − P
KP

)
,

where e again is the trophic conversion efficiency.
Due to alternative food sources available, the preda-
tors grow logistically with intrinsic growth rate b and
carrying capacity KP. Introducing the dimensionless
quantities

β = b
aKP

, κ = KP

eK
,

we arrive at the following dimensionless system:

∂

∂ t̃
Ñ = −v

∂

∂ x̃
Ñ + ∂2

∂ x̃2
Ñ + αÑ(1 − Ñ) − Ñ P̃,

∂

∂ t̃
P̃ = −δv

∂

∂ x̃
P̃ + ε

∂2

∂ x̃2
P̃ + Ñ P̃ + β P̃(κ − P̃),

where the remaining quantities are defined as in the
specialist predators model. Dropping the tildes for no-
tational convenience gives the dimensionless Eqs. 1–3
with Eq. 11.

Appendix B: Derivation of traveling wave speeds

Our first step is to consider traveling wave solutions to
system Eqs. 1–2 without the unidirectional flow, i.e.,

∂

∂t
N(x, t) = ∂2

∂x2
N(x, t) + f (N, P)N , (17)

∂

∂t
P(x, t) = ε

∂2

∂x2
P(x, t) + g(N, P)P . (18)

In a second step, we will look at the full system
Eqs. 1–2.

Traveling waves are translationally invariant solu-
tions of the form N(z) = N(x, t) and P(z) = P(x, t)
with z = x − ct. They have a fixed profile and move
with constant speed c. Corresponding boundary condi-
tions are

N(−∞) = Nl , N(+∞) = Nr,

P(−∞) = Pl , P(+∞) = Pr.

Substituting

∂

∂t
N(x, t) = −cN′ ,

∂2

∂x2
N(x, t) = N′′,

∂

∂t
P(x, t) = −cP′ ,

∂2

∂x2
P(x, t) = P′′,

where the primes denote differentiation with respect
to z, the partial differential Eqs. 17–18 can be trans-
formed to the following system of ordinary differential
equations:

−c N′ = N′′ + f (N, P)N,

−c P′ = εP′′ + g(N, P)P.

Introducing the new variables O = N′ and Q = P′, we
arrive at a system of four differential equations of first
order:

N′ = O , (19)

O′ = −c O − f (N, P)N , (20)

P′ = Q , (21)

εQ′ = −c Q − g(N, P)P . (22)

Recall that we are interested in two different scenar-
ios (cf. Fig. 1). First, the prey spread into uninhabited
space. We can specify the following boundary condi-
tions. For z → +∞, the prey still need to invade, i.e.,
Nr = 0. For z → −∞, the prey have already grown
to carrying capacity, i.e., Nl = 1. Moreover, we can
assume that the predators are absent, P ≡ 0. Then,
system Eqs. 19–22 reduces to

N′ = O , (23)

O′ = −c O − f (N, 0)N . (24)

If f (N, 0) is of logistic type as in Eq. 3, system Eqs. 23–
24 corresponds to the Fisher equation (Fisher 1937;
Kolmogorov et al. 1937). The minimum wave speed for
which traveling wave solutions exist is the one given in
Eq. 8. For Fisher’s equation, the minimum wave speed
corresponds to the spread rate with which a locally
introduced population will spread outwards (Aronson
and Weinberger 1975).

Second, we are interested in the spread of preda-
tors. They propagate into an area where the prey have
grown to carrying capacity. Ahead of the wave front,
i.e., for z → +∞, we have N = 1 and P = 0. Behind
the wave front, i.e., for z → −∞, predators and prey
approach their coexistence state (N∗, P∗), cf. Fig. 1.
Dunbar (1983, 1984) has proven the existence of such
traveling waves and shown that their minimum wave
speed is the one given in Eq. 10. This can also be
heuristically derived by approximating N ≈ 1 and P ≈
0 at the wave fronts (cf. Shigesada and Kawasaki 1997).
System Eqs. 19–22 then reduces to

P′ = Q , (25)

εQ′ = −c Q − g(1, P)P , (26)
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with Pl = P∗ and Pr = 0. If g(1, P) is of the type
as in Eq. 4, system Eqs. 25–26 corresponds to the
Luther/Skellam model (Luther 1906; Skellam 1951). If
g(1, P) is of the type as in Eq. 11, system Eqs. 25–26
corresponds to the Fisher model. In either case, the
minimum wave speed is given by Eq. 10.

The wave speeds derived here, i.e., Eqs. 8 and 10,
are referred to as reaction–diffusion speeds in the main
text. Finally, we return to the initial Eqs. 1–2 with
advective flow. The advection term is equivalent to
using a moving reference frame as in Eqs. 17–18. That
is, changing (x, t) to x − vt or x − δvt transforms Eqs. 1–
2 to the same form as in Eqs. 17–18, cf. Lewis et al.
(2009). We just need to consider two types of waves
for both prey and predators, depending on whether
they spread downstream or upstream. Their respective
speeds are given by Eqs. 5 and 6 in the main text.
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